Why Gases Show Non-ideal Behavior

1. Intermolecular forces of attraction exist.

$$\rightarrow V_{\rm real} < V_{\rm ideal}$$

If P is applied pressure, then

- The stronger the forces of attraction between molecules, the greater will be the deviation from ideal behavior.
- 2. Molecular volumes are not negligible under some conditions.

$$\rightarrow V_{\rm real} > V_{\rm ideal}$$

If *P* is applied pressure, then

The larger the molecules, the greater will be the deviation from ideal behavior.

When Are Real Gases Most Likely to Deviate from Ideal Gas Behavior?

1. Low Temperature, *T*:

Kinetic energy is lower and sample volume is smaller, fostering intermolecular attractions.

$$\rightarrow V_{\rm real} < V_{\rm ideal}$$

2. High Pressure, *P*:

Molecules crowd together, making their volumes a more significant part of the sample volume.

$$\rightarrow V_{\rm real} > V_{\rm ideal}$$

The van der Waals Equation

Johannes van der Waals (1873)

$$\left(P + \frac{n^2a}{V^2}\right)(V - nb) = nRT$$

- The constants a and b are empirically determined for the specific gas.
- P and V are the measured values of the real gas, not the ideal gas values.
- The term n^2a/V^2 is added to the measured P to correct for intermolecular attractive forces. (P would be greater if these attractions did not restrain the molecules in their collisions, so $P + n^2a/V^2 = P_{ideal}$.)

$$P_{\rm real} < P_{\rm ideal}$$

• The term nb is subtracted from the measure V to correct for the portion of the sample that is not compressible due to the molecules' individual volumes. (Molecular volume is part of the measured V, so $V - nb = V_{ideal}$.)

$$V_{\rm real} > V_{\rm ideal}$$